Study on an Improved ACO Algorithm Based on Multi-Strategy in Solving Function Problem
نویسندگان
چکیده
In order to overcome the blindness of chaotic search, improve the convergence speed and global solving ability of the basic ant colony optimization(ACO) algorithm, an improved ACO algorithm based on combining multi-population strategy, adaptive adjustment pheromone strategy, chaotic search method and min-max ant strategy (MPCSMACO)is proposed in this paper. In the proposed MPCSMACO algorithm, the multi-population strategy is introduced to realize the information exchange and cooperation among the various types of ant colony. The chaotic search method with the ergodicity, randomness and regularity by using the logistic mapping is used to overcome too long search time, avoid falling into the local extremum in the initial stage and improve the search accuracy in the late search. The min-max ant strategy is used to avoid the local optimization solution and the stagnation. And the ants with different probability search different area according to the concentration of pheromone, so as to reduce the search number of the blindness of chaotic search method. Several Benchmark functions are selected to testify the performance of the MPCSMACO algorithm. The experiment results show that the MPCSMACO algorithm takes on the better global search ability and convergence performance.
منابع مشابه
ACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem
The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...
متن کاملSolving the Airline Recovery Problem By Using Ant Colony Optimization
In this paper an Ant Colony (ACO) algorithm is developed to solve aircraft recovery while considering disrupted passengers as part of objective function cost. By defining the recovery scope, the solution always guarantees a return to the original aircraft schedule as soon as possible which means least changes to the initial schedule and ensures that all downline affects of the disruption are ...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملAn ACO algorithm for one-dimensional cutting stock problem
The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-heuristic method based on ACO is presented to solve this problem. In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select the...
متن کاملOptimal Distributed Generation (DG) Allocation in Distribution Networks using an Improved Ant Colony Optimization (ACO) Algorithm
Abstract: The development of distributed generation (DGs) units in recent years have created challenges in the operation of power grids, especially distribution networks. One of these issues is the optimal allocation (location and capacity) of these units in distribution networks. In this thesis, a method based on the improved ant colony optimization algorithm is presented to solve the problem ...
متن کامل